Arginine Metabolism: Enzymology, Nutrition, and Clinical Significance Novel Roles for Arginase in Cell Survival, Regeneration, and Translation in the Central Nervous System
نویسندگان
چکیده
In this review the current knowledge about the arginine-degrading enzyme arginase and its unexpected roles in survival and regeneration in the central nervous system will be discussed. Recent data suggest the neuroprotective effects of extracellularly applied arginase can be attributed to an activation of the endoplasmic reticulum stress response with a consequent change of the pro-survival gene expression profile. However, the activation of neural regeneration pathways caused by an upregulation of endogenous arginase I is mediated by polyamines, a group of arginase downstream products with widespread biological effects. In light of these new discoveries, there is heightened interest in the regulation of arginase I gene expression within the central nervous system. A number of transcription factors such as Sp1, C/EBP (CCATT/enhancer-binding protein), and CREB seem to be involved in the transcriptional control of arginase I and may contribute to the complex expression pattern of arginase I in distinct brain regions and during development. Beyond molecular mechanisms, this review will also include relevant clinical findings in patients with neurodegenerative diseases. J. Nutr. 134: 2812S–2817S, 2004.
منابع مشابه
Arginase Activity and Its Effects on Pathogenesis of Leishmania
Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...
متن کاملDopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy
Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملiTRAQ-based proteomics profiling of Schwann cells before and after peripheral nerve injury
Objective(s): Schwann cells (SCs) have a wide range of applications as seed cells in the treatment of nerve injury during transplantation. However, there has been no report yet on kinds of proteomics changes that occur in Schwann cells before and after peripheral nerve injury.Materials and Methods: Activated Schwann cells (ASCs) and normal Schwann cells (NSCs) were obtained from adult Wistar ra...
متن کاملP134: Central Nervous System and Blood Biomarker in Stroke, CNS Bleeding, Epilepsy, and Traumatic CNS Injury; MicroRNAs
A Central nervous system (CNS) hemorrhage is bleeding in or around the brain and spinal cord. Reasons of CNS hemorrhage include high blood pressure, cancers, drug abuse, abnormally weak blood vessels that leakage, and trauma. Regression of CNS bleeding was confirmed to be relatively repetitive in patients with severe FV, FX, FVII and FXIII deficiencies. Generally in CNS hemorrhage, radiological...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004